192 research outputs found

    Basement control on dyke distribution in Large Igneous Provinces: Case study of the Karoo triple junction.

    Get PDF
    Continental flood basalts consist of vast quantities of lava, sills and giant dyke swarms that are associated with continental break-up. The commonly radiating geometry of dyke swarms in these provinces is generally interpreted as the result of the stress regime that affected the lithosphere during the initial stage of continental break-up or as the result of plume impact. On the other hand, structures in the basement may also control dyke orientations, though such control has not previously been documented. In order to test the role of pre-dyke structures, we investigated four major putative Karoo-aged dyke swarms that taken together represent a giant radiating dyke swarm (the so-called "triple-junction") ascribed to the Jurassic Karoo continental flood basalt (> 3x10 6 km2; southern Africa). One of the best tests to discriminate between neoformed and inherited dyke orientation is to detect Precambrian dykes in the Jurassic swarms. Accordingly, we efficiently distinguished between Jurassic and Precambrian dykes using abbreviated low resolution, 40Ar/39Ar incremental heating schedules. Save-Limpopo dyke swarm samples (n = 19) yield either apparent Proterozoic (728-1683 Ma) or Mesozoic (131-179 Ma) integrated ages; the Olifants River swarm (n = 20) includes only Proterozoic (851-1731 Ma) and Archaean (2470-2872 Ma) dykes. The single age obtained on one N-S striking dyke (1464 Ma) suggests that the Lebombo dyke swarm includes Proterozoic dykes in the basement as well. These dates demonstrate the existence of pre-Karoo dykes in these swarms as previously hypothesized without supporting age data.In addition, aeromagnetic and air-photo interpretations indicate that: (1) dyke emplacement was largely controlled by major discontinuities such as the Zimbabwe and Kaapvaal craton boundaries, the orientation of the Limpopo mobile belt, and other pre-dyke structures including shear zones and (2) considering its polygenetic, pre-Mesozoic origin, the Olif ants River dyke swarm cannot be considered part of the Karoo magmatic event.This study, along with previous results obtained on the Okavango dyke swarm, shows that the apparent "triple junction" formed by radiating dyke swarms is not a Jurassic structure; rather, it reflects weakened lithospheric pathways that have controlled dyke orientations over hundreds of millions of years. One consequence is that the "triple-junction" geometry can no longer be unambiguously used as a mantle plume marker as previously proposed, although it does not preclude the possible existence of a mantle plume. More generally, we suggest that most Phanerozoic dyke swarms (including triple junctions) related to continental flood basalts were probably controlled in part by pre-existing lithospheric discontinuities

    The Karoo triple junction questioned : evidence from Jurassic and Proterozoc 40Ar/39Ar ages and geochemistry of the giant Okavango dyke swarm (Botswana).

    Get PDF
    The lower Jurassic Karoo-Ferrar magmatism represents one of the most important Phanerozoic continental flood basalt (CFB) provinces. The Karoo CFB province is dominated by tholeiitic traps and apparently radiating giant dyke swarms covering altogether ca. 3 106 km2. This study focuses on the giant N110j-trending Okavango dyke swarm (ODS) stretching over 1500 km across Botswana. This dyke swarm represents the main (failed) arm of the so-called Karoo triple junction that is generally considered as a key marker of the impingement of the Karoo starting mantle plume head. ODS dolerites yield six new plagioclase 40Ar/39Ar plateau (and miniplateau) ages ranging from 178.7F0.7 and 180.9F1.3 Ma. The distribution of the ages along a narrow Gaussian curve suggests a short period of magmatic activity centered around 179 Ma, i.e., f5 Ma younger than the emplacement age of Karoo mafic magmas in the southern part of the Karoo CFB province (f184). This age difference indicates that Karoo magmatism does not represent a short-lived event as is generally the case for most CFB but lasted at least 5Ma over the whole province. In addition, small clusters of plagioclase separated from 28 other dykes and measured by "speedy" step-heating experiments (with mostly two to three steps), gave either "Karoo" or Proterozoic ages.Integrated ages of the Proterozoic rocks range from 851 6 to 1672 7 Ma, and one plateau age (959.1 4.6 Ma) and one possibly geologically significant weighted mean age (982.7 4.0 Ma) were obtained. Proterozoic and Karoo mafic rocks are petrographically similar, but Proterozoic dykes display clear geochemical differences (e.g., TiO 22.1%). Geochemical data combined with available Ar/Ar dates allow the identification of the two groups within a total set of 77 dykes investigated: f10% of the bulk ODS dykes are Proterozoic. Thus, the Jurassic Karoo ODS dykes were emplaced along reactivated Proterozoic structures and there is no pristine Jurassic Nuanetsi triple junction as commonly proposed. This throws into doubt the validity of the "active plume head" Karoo CFB rift models as being responsible for the observed "triple junction" dyke geometr

    The Okavango giant mafic dyke swarm (NE Botswana): its structural significance within the Karoo Large Igneous Province

    Get PDF
    The structural organization of a giant mafic dyke swarm, the Okavango complex, in the northern Karoo Large Igneous Province (LIP) of NE Botswana is detailed. This N110E-oriented dyke swarm extends for 1500 km with a maximum width of 100 km through Archaean basement terranes and Permo-Jurassic sedimentary sequences. The cornerstone of the study is the quantitative analysis of N>170 (exposed) and N>420 (detected by ground magnetics) dykes evidenced on a ca. 80-km-long section lying in crystalline host-rocks, at high-angle to the densest zone of the swarm (Shashe area). Individual dykes are generally sub-vertical and parallel to the entire swarm. Statistical analysis of width data indicates anomalous dyke frequency (few data <5.0 m) and mean dyke thickness (high value of 17 m) with respect to values classically obtained from other giant swarms. Variations of mean dyke thicknesses from 17 (N110E swarm) to 27 m (adjoining and coeval N70E giant swarm) are assigned to the conditions hosting fracture networks dilated as either shear or pure extensional structures, respectively, in response to an inferred NNW?SSE extension. Both fracture patterns are regarded as inherited brittle basement fabrics associated with a previous (Proterozoic) dyking event. The Okavango N110E dyke swarm is thus a polyphase intrusive system in which total dilation caused by Karoo dykes (estimated frequency of 87%) is 12.2% (6315 m of cumulative dyke width) throughout the 52-km-long projected Shashe section. Assuming that Karoo mafic dyke swarms in NE Botswana follow inherited Proterozoic fractures, as similarly applied for most of the nearly synchronous giant dyke complexes converging towards the Nuanetsi area, leads us to consider that the resulting triple junction-like dyke/fracture pattern is not a definitive proof for a deep mantle plume in the Karoo LIP

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p &lt; 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM &gt; 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM &gt; 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore